天木生物科技有限公司-高通量自动化-细胞筛选平台

Applications
您當前的位置:首頁 >>SUPPORT&RESOURCES >>Applications

TMAXTREE DREM cell successfully facilitates the high-throughput screening of antagonistic bacteria

來源:   作者: 發布日期:2024-04-12 訪問量:1520

TMAXTREE DREM cell successfully facilitates the high-throughput screening of antagonistic bacteria



In this issue, we recommend the work of Prof. Zhu Li's group in the School of Life Sciences, Guizhou University, related to high-throughput screening based on microfluidic technology. The group screened antagonistic bacteria through a droplet microfluidic platform, which improved the screening efficiency by about 3000 times compared with the traditional agar plate screening method. The mutants obtained from the screening showed a 62% increase in bacterial inhibitory activity compared to the wild-type strain.

圖片1

Figure 1 High-throughput screening process of antagonistic bacteria

Soft rot is a bacterial plant disease that severely affects crops and is mainly caused by the soft-rotting bacterium Erwinia carotovora, which occurs in the fleshy storage tissues of vegetable and ornamental plants. This disease can spread rapidly within the plant, causing tissue hydrolysis, rotting, and ultimately resulting in reduced or even total crop loss, thus causing huge economic losses to agricultural production and becoming one of the most important factors limiting sustainable agricultural development.

Soft rot is a bacterial plant disease that severely affects crops and is mainly caused by the soft-rotting bacterium Erwinia carotovora, which occurs in the fleshy storage tissues of vegetable and ornamental plants. This disease can spread rapidly within the plant, causing tissue hydrolysis, rotting, and ultimately resulting in reduced or even total crop loss, thus causing huge economic losses to agricultural production and becoming one of the most important factors limiting sustainable agricultural development.

With the rapid development of modern biotechnology, biological control has been increasingly emphasized because of its good biological control effect, non-toxicity, harmlessness, non-pollution and other characteristics. Agricultural antibiotics (bioactive substances), antagonistic microorganisms and so on have been better applied in the research of pest control. The traditional screening of antagonistic bacteria is usually carried out by agar plate method, which has the limitations of high labor intensity, high cost and low efficiency, significantly affecting the screening and application of antagonistic bacteria. With the development of droplet microfluidic technology, its high-throughput characteristics were utilized to construct a new screening platform-DREM Cell, which significantly improves the screening efficiency while drastically reduces the cost.

Soil samples were collected from 10 cm below the surface of a konjac planting area in Bijie City, Guizhou Province, and the microbial resources were probed using the droplet system and the Petri dish system, respectively. The results of microscopic examination showed that the number of bacterial-containing droplets accounted for about 12.22% of the total number of droplets, and the number of colonies in droplets was basically the same as that of plates, indicating that the growth of strains in droplets was comparable to that of plate culture (Figure 2). Analysis of the colonies obtained under different culture conditions revealed that more than 95% of the OTUs in the droplet culture samples belonged to rare biotopes, and their relative abundance was less than 0.01% in the original soil samples (Fig. 3), which indicates that droplet culture has great potential for revealing rare biotopes in complex microbial communities.

圖片2

Figure. 2 Microscope images of droplet generation and incubation of droplet samples

圖片3

Figure 3 Comparison of amplicon sequencing results of different culture samples

Utilizing the GFP-Ecc15 strain as a reporter, the antagonist bacteria could inhibit the growth of the reporter strain, thus significantly reducing the fluorescence value of the system (Figs. 4, 5). The suitability of the screening system was verified in the enrichment screening of the mixed system of antagonist B. velezensis and non-antagonist E. coli, and the high-throughput screening model of antagonist bacteria was established. The maximum enrichment efficiency of the antagonist bacteria reached 226-fold, and the average enrichment efficiency of the antagonist bacteria in three replicate experiments increased 148-fold. The results demonstrated that the screening model based on droplet microfluidics could well isolate the bacteria with inhibitory effects on the reporter strains.

圖片4

Figure 4 Growth of GFP-Ecc15 in droplets

圖片5

Figure 5 Effect of antagonistic and non-antagonistic bacteria on the fluorescence value of GFP-Ecc15

Finally, based on this high-throughput model, screening of antagonistic strains was performed on complex samples of soil environment. Sorting was carried out at a rate of 105 cells per hour, and the sorted droplets were applied to the plates, and single colonies were selected to verify their inhibitory ability against the pathogen indicator bacterium Ecc15 by agar diffusion method. After screening, 32 bacterial strains with antimicrobial activity were enriched, among which the best strain achieved an inhibitory diameter of 20.86±1.56 mm. After ARTP mutagenesis, the inhibitory diameter was further enlarged to 26.15±0.29 mm, which was significantly larger than that of the starting strain of 18.31±0.64 mm (Figure 6), and the inhibitory activity was enhanced by 62%.

圖片6圖片6


Figure 6 Differences in the circle of inhibition between the highly active mutant and the wild type

In this study, we combined droplet microfluidics with ARTP mutagenesis to carry out high-throughput antagonistic bacteria screening using the DREM Cell platform for environmental microbial resource mining, screening of antagonistic strains from complex samples, and screening of strain mutation libraries. Compared with the traditional method, the reagent consumption of culture medium was reduced to 1.2×107, and the screening rate was increased by more than 3,000 times, and highly efficient antagonistic bacteria were successfully screened and mutagenized from soil samples. This platform provides a more efficient and less costly solution for the screening of antagonistic bacteria, and offers a new perspective for agricultural biological control, which is important for the in-depth understanding and utilization of biological resources hidden in tiny soil particles.


Paper DOI: 10.27047/d.cnki.ggudu.2023.001995

TMAXTREE DREM cell successfully facilitates the high-throughput screening of antagonistic bacteria



In this issue, we recommend the work of Prof. Zhu Li's group in the School of Life Sciences, Guizhou University, related to high-throughput screening based on microfluidic technology. The group screened antagonistic bacteria through a droplet microfluidic platform, which improved the screening efficiency by about 3000 times compared with the traditional agar plate screening method. The mutants obtained from the screening showed a 62% increase in bacterial inhibitory activity compared to the wild-type strain.

圖片1

Figure 1 High-throughput screening process of antagonistic bacteria

Soft rot is a bacterial plant disease that severely affects crops and is mainly caused by the soft-rotting bacterium Erwinia carotovora, which occurs in the fleshy storage tissues of vegetable and ornamental plants. This disease can spread rapidly within the plant, causing tissue hydrolysis, rotting, and ultimately resulting in reduced or even total crop loss, thus causing huge economic losses to agricultural production and becoming one of the most important factors limiting sustainable agricultural development.

Soft rot is a bacterial plant disease that severely affects crops and is mainly caused by the soft-rotting bacterium Erwinia carotovora, which occurs in the fleshy storage tissues of vegetable and ornamental plants. This disease can spread rapidly within the plant, causing tissue hydrolysis, rotting, and ultimately resulting in reduced or even total crop loss, thus causing huge economic losses to agricultural production and becoming one of the most important factors limiting sustainable agricultural development.

With the rapid development of modern biotechnology, biological control has been increasingly emphasized because of its good biological control effect, non-toxicity, harmlessness, non-pollution and other characteristics. Agricultural antibiotics (bioactive substances), antagonistic microorganisms and so on have been better applied in the research of pest control. The traditional screening of antagonistic bacteria is usually carried out by agar plate method, which has the limitations of high labor intensity, high cost and low efficiency, significantly affecting the screening and application of antagonistic bacteria. With the development of droplet microfluidic technology, its high-throughput characteristics were utilized to construct a new screening platform-DREM Cell, which significantly improves the screening efficiency while drastically reduces the cost.

Soil samples were collected from 10 cm below the surface of a konjac planting area in Bijie City, Guizhou Province, and the microbial resources were probed using the droplet system and the Petri dish system, respectively. The results of microscopic examination showed that the number of bacterial-containing droplets accounted for about 12.22% of the total number of droplets, and the number of colonies in droplets was basically the same as that of plates, indicating that the growth of strains in droplets was comparable to that of plate culture (Figure 2). Analysis of the colonies obtained under different culture conditions revealed that more than 95% of the OTUs in the droplet culture samples belonged to rare biotopes, and their relative abundance was less than 0.01% in the original soil samples (Fig. 3), which indicates that droplet culture has great potential for revealing rare biotopes in complex microbial communities.

圖片2

Figure. 2 Microscope images of droplet generation and incubation of droplet samples

圖片3

Figure 3 Comparison of amplicon sequencing results of different culture samples

Utilizing the GFP-Ecc15 strain as a reporter, the antagonist bacteria could inhibit the growth of the reporter strain, thus significantly reducing the fluorescence value of the system (Figs. 4, 5). The suitability of the screening system was verified in the enrichment screening of the mixed system of antagonist B. velezensis and non-antagonist E. coli, and the high-throughput screening model of antagonist bacteria was established. The maximum enrichment efficiency of the antagonist bacteria reached 226-fold, and the average enrichment efficiency of the antagonist bacteria in three replicate experiments increased 148-fold. The results demonstrated that the screening model based on droplet microfluidics could well isolate the bacteria with inhibitory effects on the reporter strains.

圖片4

Figure 4 Growth of GFP-Ecc15 in droplets

圖片5

Figure 5 Effect of antagonistic and non-antagonistic bacteria on the fluorescence value of GFP-Ecc15

Finally, based on this high-throughput model, screening of antagonistic strains was performed on complex samples of soil environment. Sorting was carried out at a rate of 105 cells per hour, and the sorted droplets were applied to the plates, and single colonies were selected to verify their inhibitory ability against the pathogen indicator bacterium Ecc15 by agar diffusion method. After screening, 32 bacterial strains with antimicrobial activity were enriched, among which the best strain achieved an inhibitory diameter of 20.86±1.56 mm. After ARTP mutagenesis, the inhibitory diameter was further enlarged to 26.15±0.29 mm, which was significantly larger than that of the starting strain of 18.31±0.64 mm (Figure 6), and the inhibitory activity was enhanced by 62%.

圖片6圖片6


Figure 6 Differences in the circle of inhibition between the highly active mutant and the wild type

In this study, we combined droplet microfluidics with ARTP mutagenesis to carry out high-throughput antagonistic bacteria screening using the DREM Cell platform for environmental microbial resource mining, screening of antagonistic strains from complex samples, and screening of strain mutation libraries. Compared with the traditional method, the reagent consumption of culture medium was reduced to 1.2×107, and the screening rate was increased by more than 3,000 times, and highly efficient antagonistic bacteria were successfully screened and mutagenized from soil samples. This platform provides a more efficient and less costly solution for the screening of antagonistic bacteria, and offers a new perspective for agricultural biological control, which is important for the in-depth understanding and utilization of biological resources hidden in tiny soil particles.


Paper DOI: 10.27047/d.cnki.ggudu.2023.001995

Copyright 2022 ? Wuxi Tmaxtree Biotechnology Co., Ltd.
Please leave a message
驗證碼,看不清楚請點擊
Thank you for your inquiry, we will reply to you as soon as possible!
主站蜘蛛池模板: 南京包装设计公司|南京手提袋制作|彩页印刷|礼品盒设计 | 轴流消防排烟风机,排烟防火阀厂家,铝合金百叶风口-德州正邦通风设备有限公司 | 搅拌设备_搅拌器_浓密机_浆式_顶入式_不锈钢「赛鼎机械」 | 呼吸家官网|肺功能检测仪生产厂家|国产肺功能仪知名品牌|肺功能检测仪|肺功能测试仪|婴幼儿肺功能仪|弥散残气肺功能仪|肺功能测试系统|广州红象医疗科技有限公司|便携式肺功能仪|大肺功能仪|呼吸康复一体机|儿童肺功能仪|肺活量计|医用简易肺功能仪|呼吸康复系统|肺功能仪|弥散肺功能仪(大肺)|便携式肺功能检测仪|肺康复|呼吸肌力测定肺功能仪|肺功能测定仪|呼吸神经肌肉刺激仪|便携式肺功能 | 私人家庭影院装修_别墅家庭影院设计_家庭影院价格方案-广州家庭影院定制公司 | 塞伯罗斯官网|二维码门禁|景区验票主板|扫码门禁|扫码开门厂家 | 铜陵冰雪制冷设备有限公司| 模具水垢清洗机_模具管路清洗机_模具专用清洗机-苏州意德特机械有限公司 | 停车场设计|地下停车场规划设计|智能停车位地下车库设计施工装修|深圳创安顺停车库规划设计有限公司 | 运动控制器_数控系统_廊坊市九盈数控技术公司「官网」 | 五凌汽配-轮胎螺丝|中心螺丝|小螺丝|轮胎螺栓|扭力杆螺丝|高强度紧固件|螺丝螺母|汽车配件 | 威学一百-专注国际学校择校备考-DSE-A-level-雅思-托福-OSSD-港澳台联考-AP-IGCSE-IB-AMC-多邻国-PTE-SAT-SSAT-小语种(如日语,韩语,德语,法语,西班牙语,意大利语,俄语,泰语)等考试培训,为出国留学学生提供个性化定制性学习方案,线下实体面授+线上网络课程, 提供一对一,小班课等多种班型 | 酒博会丨京酒展丨北京国际酒业博览会 | 河南车用尿素设备_郑州车用尿素设备_河南江宇环保车用尿素液厂家 | 制砂机_选矿设备_耐磨件-郑州富嵩机械设备有限公司 | 芜湖藦卡机器人科技有限公司| 橡胶粉碎机_轮胎粉碎机_橡胶切条机_橡胶粉碎机价格_河南鑫世昌机械制造有限公司 | 专注欧美工业控制自动化设备-MRO工业品采购服务-科电远扬 | 潍坊博发动力设备有限公司| 双单面研磨机_陶瓷平面研磨机_机械密封件研磨机-百诚研磨机械 | 南宁清洁公司|外墙清洗|开荒清洁|洒水车|管道疏通|园林绿化_广西优而美环境工程有限公司 | 暖气片,暖气片厂家,散热器,暖气片品牌-青岛瑞雪兆散热器有限公司 | 门禁控制器-自动道闸-停车场系统-车位引导系统-车牌识别系统-楼宇对讲-可视门铃-门禁一卡通-河北京鹏电子科技有限公司 | 液晶拼接屏_三星46寸/55寸/LG液晶拼接屏_深圳拼接墙厂家_电视大屏幕液晶拼接_高清工业级液晶监视器 | 三坐标测量机_海克斯康三坐标_蔡司三坐标_常州三坐标测量服务中心_苏州长南精密技术有限公司 | 锌铝合金压铸-深圳压铸加工-铝挤压拉伸-压铸模具厂-广东誉格精密技术有限公司 | 郑州建网站,郑州做网站,郑州网站建设,郑州网站制作,郑州高端定制网站,郑州APP开发 | 洁衣库·U袋洗_网上洗衣店_网上干洗 | 自动隔油提升设备,消防稳压一体设备,苏州不锈钢消防水箱,污水提升设备厂家,无负压变频供水设备厂家-苏州脉泉供水设备有限公司 | 河北省金融租赁有限公司官网 | 河北万岁药业有限公司 | 津成电线电缆价格,天津津成线缆,津成线缆销售电话,天津津成线缆批发电话-天津市津成电线电缆有限公司 | 上海前 傲信息技术有限公司-企业信息化建设及品牌推广服务商 | 中频感应加热设备_高频感应加热电源厂家_高频淬火设备_容大电源 中派康明斯发电机_玉柴发电机厂家_静音移动拖车发电机-深圳市斯坦福电力设备有限公司 | 耐磨颗粒胶_陶瓷颗粒胶_大小颗粒耐磨胶_耐磨防护胶-北京耐默 | 直流电机调速器,直流电机控制器,直流电机调速电源-淄博诚铖创惠电子有限公司 | 深圳市中控智能科技有限公司| 微米环境-餐厨/厨余/果蔬垃圾处理设备厂家-大型成套设备解决方案 | 上海钧尚电器有限公司 - Faulhaber电机 AMETEK pittman电机 AMETEK ROTRON军用航空风机 Exlar电动缸 MAE电机 MCG电机 CP电动工具 马头工具 AMCI驱动器 直流电机 减速箱 直流伺服电机,无刷电机,直线电机 直流防爆电机 防爆电机 汽车助力转向电机 EPS电机 faulhaber motor faulhaber gearbox NANOTEC电机 ELWOOD电机 PHYTRON电机 EXLAR伺服电动缸 高力矩、高性能直流电机,音圈电机,风机,直流风机,航空风机 | 自动锁螺丝机_在线式拧螺丝机_自动化灌胶机_ab点胶机_品牌厂家 | 廊坊纳科新材料技术有限公司--纳科新材料技术有限公司|廊坊纳科新材料|纳科新材料技术 |